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Abstract— A fast adaptive heuristic stochastic gradient descent method is proposed. It is shown that
this algorithm has a higher convergence rate in practical problems than currently popular optimization
methods. Furthermore, a justification of this method is given, and difficulties that prevent obtaining
optimal estimates for the proposed algorithm are described.
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1. INTRODUCTION

In this paper, we propose a heuristic algorithm for solving stochastic optimization problems that is a
generalization of the fast gradient descent method [1]. Stochastic optimization methods have recently
become popular because they reduce the complexity of calculating the gradient, which is extremely
important since there are functions for which it is impossible to calculate the gradient of the function to
be optimized even at one point in a reasonable amount of time (see [2, 3]). Moreover, due to the problem
formulation in stochastic optimization [4], sampling of vectors that have unbiased directions with respect
to the true gradient is the only reasonable method for calculating the descent direction. This approach is
also popular in deep learning [3] in problems in which the objective function have the form of a sum of
functions [4]. Note that the complexity of computing the stochastic gradient can usually be controlled. We
also note that a slower version of the proposed algorithm can be found in [5].

The problem of finding a fast adaptive gradient descent method with a stochastic gradient is still
important. As far as we know, it has not yet been solved, and the work in this direction is going on. In [6],
a method that is effective both for smooth and nonsmooth problems was proposed. However, it is not
accelerated—the step is chosen in such a way that it does not increase, while in the method proposed in
the current paper the step is chosen adaptively, and it can both increase or decrease. In [7], it was proposed
to combine the unaccelerated stochastic gradient descent method with Armijo’s rule [8]; as a result, it was
proved that the proposed method has the same convergence rate as the unaccelerated gradient descent
method; however, this was done only under certain special assumptions about the optimization problem.
In [9], a proof of a version of the method Adagrad [10] for the case when the function is smooth and non-
convex was proposed; however, as in [6], the step of the method does not increase and the method is not
fully adaptive and cannot adjust to local smoothness. A similar difficulty occurs in [11, 12], but in these
papers accelerated versions of the gradient descent method and more flexible step size in the algorithms
are proposed. In [12], the methods depend on an estimate of the distance between the initial and the opti-
mal points (size of solution). A considerable amount of work on finding a fast adaptive stochastic gradient
descent method was done in [13]. In that paper, an adaptive stochastic method for variational inequalities
was proposed, and the proof of convergence of this method is based on the theory of empirical processes
[14, 15]. Note that the unaccelerated gradient descent method is a special case of the method designed for
solving variational inequalities, while the accelerated gradient descent method cannot be derived on the
basis of [ 13]. Moreover, there is a constraint on the maximum size of the step, which somewhat simplifies
the analysis of the algorithms proposed in [13].

Unfortunately, we failed to obtain theoretical estimates for the proposed method. In this paper, we
describe experiments (see Section 4) that show that the proposed algorithm has a higher convergence rate
than Adagrad [10] and Adam [16] in machine learning problems with logistic regression, neural network
and convolutional neural network. In addition, in Section 3, we give a justification of the proposed algo-
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rithm and discuss some details that prevented us from rigorously proving the method convergence in the
optimal form.

2. FAST ADAPTIVE STOCHASTIC GRADIENT DESCENT METHOD
First, we give the general formulation of the convex optimization problem [1]. Let a function
f(x): @ — R and an arbitrary norm | - || in R" be given. The adjoint norm is defined by
M € max (Av) VieR".
[V|st;veR”

We assume that

1. 0 c R" is a convex closed set;
2. f(x) is a continuous convex function on Q;
3. f(x)isbounded from below on Q and attains its minimum at a certain point (not necessarily unique)
X € 0.
Consider the optimization problem
f(x)—> r)l}EiQn.

Let us introduce the concepts of prox-function and Bregman divergence [17].

Definition 1. d(x): Q0 — R is called a prox-function if d(x) is continuously differentiable on int Q and
d(x) is 1-strongly convex with respect to the norm |- | on int Q.

Definition 2. The Bregman divergence is

def
V(x,y) = d(x)—d(y)—(Vd(y),x - y),
where d(x) is an arbitrary prox-function.
Definition 3. A stochastic (8, L)-oracle is an oracle that, for the given point y € Q, produces a pair

(s, Vf5(1:€)) such that
070~ i)~ (VAWx=y) < S —of +5 Vxeo.
E[VA(:0)] = V() Vyeo,

ey 2
E{CXP[IIVJ%W,&) Vz%(y)u*ﬂgexp o weo

(52
where 6° > 0 and € is an arbitrary random variable.
Note that the concept of a stochastic (8, L)-oracle is based on the concept of the (8, L) -oracle [18—20].
Remark 1. In Definition 3, we can additionally require that not only the gradient but also the function
itself are random; i.e., we can require that the stochastic (3, L)-oracle returns a random value f5(y;&)
instead of the nonrandom f5(y).

Define the constant R, such that
R, 2 max”x - y||

x,yeQ
We assume that R, < oo.
In the method proposed below, we will estimate the true gradient at each step by the quantity V£;(y;§)),
j € [l...m,,] using the mini-batch technique (e.g., see [21]).
Define

My 41

~ def
V) = = VAME). (1)

k+1 j=1
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Let K be the regularity constant defined in [22] for (R",||- |). For certain simple cases, it holds that if
|| : ”* = || “|l,» then x = 1. Moreover, if|| . "* = || . ||q for g € [2,0], then ¥ = min[g —1,21In(n)]. Introduce the

notation Q o 2% + 40k + 2Q°.

In the proposed algorithm, we will use the constant Z, > 0, which has the sense of supposedly local
Lipschitz constant of the gradient at the point x,. Consider the adaptive mirror version of the method of
similar triangles with the stochastic (a, L)-oracle.

Algorithm 1 (Theoretical version)

Input: an initial point x,, the desired solution accuracy €, the constants § and L in the (3, L)-oracle,
the confidence level B, L, (L, < L), and the constant o’ in Definition 3.

Algorithm: Set

N::{M—l’ Q= 61nﬂ.

Ve B
Step 0:
Yo = X0, Uy = Xo» ao = 0, AU = ao.
Stepk +1:
Jer1 =0,
Until the inequality
= my ) L ) | 36°Q
JSs(Xei1) < fsWi) + <V JSsiea)s X1 — J’k+1> + ﬁ||xk+1 - J’k+1|| +———"-+3 (2)
2 Ly iy 4

becomes true, repeat

1+ T+ 441
Ly =270, oy = AL Ay = A+ Oy,
2L,
Oy ity + A P {36290%“—'

Y+l = ) k+l +—
€

Generate independent identically distributed (i.i.d.) random variables & ; (J =1,...,m,,) and calculate

V™ fs(Ven)-

Gp1(x) < V(x,uy) + Ol (fs(J’kH) + <mG+1f6(yk+l)a X - J’k+1>)

— . o Oy + AeXy .
Uy = argmin @, (X), Xy = s Jknt = Jen 1L
x€Q A

End of algorithm.

Hypothesis 1. Let x,, be the closest minimizer to the point x, in the sense of the Bregman divergence and the
accuracy be d = @(63/ 2). Then, for the proposed algorithm, the following equality holds with the probability
1-0(@):

SFGen) = f(x) = O(e).
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3. JUSTIFICATION OF THE ALGORITHM

Here, we give a justification of this algorithm. The algorithm is based on the gradient descent methods
described in [20, 23, 5]. For the fast adaptive gradient descent method with the (J, L)-oracle, the following
convergence estimate can be obtained (see [20, 23, 5]):

2
Fon) = fx) < @[ R +N8j

For the fast stochastic gradient descent method with the (9, L)-oracle, the following estimate was obtained
in [20]:

Flxy) — f(x*)<@( Ro . jR_Qj

Therefore, the expected estimate for the fast adaptive stochastic gradient descent method with the (8, L)-oracle
should be

2
Fon) = f(x) < @( o +N8+j%’j

Currently, the main difficulty in proving Hypothesis 1 is related to “rejection sampling” [24]. In the
proofs of optimization methods with stochastic gradient (see (1)), the key point is the fact that the sto-
chastic gradient has an unbiased expectation relative to the true gradient. However, this is not the case for
the algorithm presented in Section 2. Note that the proposed method is adaptive and is adjusted to local
smoothness by checking inequality (2). Thus, when we select the step in the inner loop, we first generate
a mini-batch, and then check to see if this mini-batch is adequate by verifying inequality (2). Thus, we
implicitly perform the rejection sampling [24]; therefore, the generated stochastic gradient is biased.

‘We made various attempts to revise the algorithm, but we failed to resolve the rejection sampling problem.

In Algorithm 1 in Section 2, we each time generate a mini-batch in the procedure of selecting the
parameter L, ,. A possible way of resolving the rejection sampling problem is to generate the mini-batch

only once before selecting the parameter L, (see Algorithm 2 in Section 4). Unfortunately, this trick
causes another difficulty. As in [20], in the course of proof the expression

N-1

Oy 41 <mG+1f8(yk+l) = VW) x — “k>

k=0

appears. The main problem is to find good upper bounds on this sum. In [20], such bounds were obtained,
and it was proved that the following inequality holds with a “high probability”:

N-1
; Oy <vmkﬂfs(yk+1) = V(W) x = ”"> = @(%j

This inequality was proved using Azuma—Hoeffding type inequalities ([20, Lemma 7.11], [25]) and the
fact that oy, are not random and the conditional expectation of the mini-batch equals the true gradient.

For the case when we fix the mini-batch only one time, we have random ., ,, that correlate with the mini-
batch; therefore, the standard Azuma—Hoeffding inequalities [20, Lemma 7.11] cannot be used.

In the next section, we perform numerical experiments by solving various optimization problems, and
we show that the practical version of the proposed algorithm (see Algorithm 2 in Section 4) performs bet-
ter than the popular algorithms Adagrad [10] and Adam [16].
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4. NUMERICAL EXPERIMENTS

First, we describe the differences between the theoretical (Algorithm 1) and practical (Algorithm 2)
versions.

1. In practice, we do not always know the constant L, and the constant R, can be unbounded; there-

fore, we are unable to exactly and a priori determine N from Algorithm 1. For this reason, we assume in
the practical version that Q = 1.

2. In the practical version, the constant m,,, is estimated using L, rather than the constant L, . This
enables us to select the parameter L, ,, more efficiently because the number m, ,, of terms in the calcula-
tion of the mini-batch does not change.

3. For many classes of functions to be optimized, which include logistic regression, neural networks,
and convolutional neural networks, the complexity of function evaluation has the same order of complex-
ity as the evaluation of the gradient [26]. Hence, we also evaluate the function value using the mini-batch
technique (see Remark 1):

Myt

A0 E LS VAGE).

My =0

The theoretical considerations in the preceding sections suggest Algorithm 2, which is the practical ver-
sion of Algorithm 1. We conducted three series of experiments. All the functions were optimized in the

j, and Q = R". The initial parameters of Algorithm 2 were

Euclidean norm || . ||2 with V(x,y) = %"x -y

identical for all experiments: the upper bound on the gradient variance 0(2) = 0.1, the accuracy € = 0.002,
and the constant [, = 1. In the experiments, we used the following sets of data.

1. MNIST [27] consists of images of handwritten digits of size 28 x 28 pixels.

2. CIFAR [28] consists of color images of size 3 x 32 X 32 pixels each which belongs to one of ten
classes.

In the first two series of experiments, we used the set MNIST. In the experiments, we trained the logis-
tic regression (a linear classifier with a convex loss function) and a two-layer neural network with the size
of the hidden layer equal to 1000 (a nonlinear classifier with a nonconvex loss function). In the case of
logistic regression, the number of optimized parameters was 7850, and in the case of the two-layer neural
network it was 795010. The optimization was performed using the proposed algorithm and the most pop-
ular adaptive algorithms Adam [16] and AdaGrad [10]. For Adagrad and Adam, the standard parameters
were used: the batch size 128 and /r = 0.001. The comparison was performed in terms of the rate of the
loss function variation as a function of the training iteration index and in terms of the classification accu-
racy on the test sample. The comparison results for the logistic regression are shown in Figs. 1a and 1b,
and for the neural network in Figs. 1c and 1d. In both cases, the proposed method outperforms the meth-
ods mentioned above both in the rate of convergence of the loss function and in accuracy.

In the third series of experiments, a small convolutional neural network learned to predict the class of
image on the data set CIFAR. The following convolutional neural network architecture was used.

1. The image matrix of size 3 X 32 x 32 is scanned by the convolution window of size 3 x 6 x 5. The con-
volution weights are adjusted parameters.

2. After the convolution, the resulting image is scanned by the so-called MaxPooling—the window of
size 2 X 2 that leaves the maximum element within it and sets the other elements to zero.

3. Next, the result of the preceding step is scanned by the convolution window of size 6 X 16 X 5.

4. Next, there are three sequential completely connected layers with the decreasing size 400, 120,
and 84.

The total number of parameters in this network is 62000. In this series of experiments, the results pro-
duced by the proposed algorithm were also compared with the results produced by Adagrad and Adam
(Figs. le and 1f). Again, Algorithm?2 demonstrated better results.
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(a) Error function as a function of iteration index (b) Test accuracy as a function of iteration index
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Fig. 1. Numerical experiments.

Algorithm 2 (Practical version)

Input: an initial point x,, the constants € > 0, L, > 0, and 6(2, > 0.
Algorithm:
Step 0:

Vo i=Xg, Uy =Xy Oy:=0, A :i=0,.
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Step k + 1:

k+1 — ’ k+1 -
€

2L,

2~
&, = 1+y1+44,L, My, = ’73(5006k+1—|’ Jiw =0,

generate i.i.d. random variables & s U =1, my).

Until the inequality

my my &7 My 4 L 2
Js ) S s ) <V LW Xpewn — yk+l> + ﬂ”xkﬂ - yk+l|| +—— (3)
2 Ly 1Oy

becomes true, repeat

L. = 2jk+,—lLk, Oy = 1+ 1+ 4A.L,.,

s A = A+ Oy,

Calculate V"™ f5(3,41) and £ (Pei1)-

def My 41 7 M +1
Or(x) = V(x,u) + 04y (fs V) + <V JsWrar )y X — J/k+1>)
_ Qi + A X

Uy = argmin @ (x), X :=———————,  Jiy = Jrn + 1.
xeQ A

Calculate f3""'(x;,;)-

End of the algorithm.
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